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1 Introduction

A systematic study of isotropic Markov semigroups de�ned on ultrametric
measure spaces has been done in:

� A. Bendikov, A. Grigoryan and C. Pittet, On a class of Markov semi-
groups on discrete ultrametric spaces, Potential Analysis 37 (2012),
125-169,

� A. Bendikov, A. Grigoryan, C. Pittet and W. Woess, Isotropic Markov
semigroups on ultrametric spaces., Russian Math. Surveys 69:4, 589-
680 (2014).

This study was motivated by the theme Random walks on in�nitely gen-
erated groups, the classical topic which can be traced back to the pioneering
works of Erdös, Spitzer, Kesten, Cartwright, Molchanov, Lawler and others.
The notion of isotropic Markov semigroup acting on a discrete ultrametric

measure space is closely related to the concept of the hierarchical lattice and
hierarchical Laplacian introduced in the celebrated Dyson�s paper.

� F.J. Dyson, Existence of a phase-transition in a one-dimensional Ising
ferromagnet, Comm. Math. Phys. (1969), 12: 91-107.

Namely, given an isotropic Markov semigroup de�ned on ultrametric mea-
sure space (X; d;m); one shows, that its minus Markov generator L is a hi-
erarchical Laplacian de�ned in terms of the hierarchical lattice (i.e. the tree
of metric balls) on (X; d;m), and vice versa.

1



� S. A. Molchanov, Hierarchical random matrices and operators, Appli-
cation to Anderson model, Proc. of 6th Lucacs Symposium (1996),
179-194,

� A. Bendikov and P. Krupski, On the spectrum of the hierarchical Lapla-
cian., Potential Analysis 41 (2014), no. 4, 1247-1266.

According to the general theory any isotropic Markov semigroup (e�tL)t>0
admits a continuous transition density p(t; x; y) w.r.t. m. We call p(t; x; y)
the heat kernel. Modifying canonically the underlying ultrametric d, we de-
note this new ultrametric d� and call it the intrinsic ultrametric, one shows
that

Lf(x) =

Z
X

(f(x)� f(y))J(x; y)dm(y); (1.1)

J(x; y) =

1=d�(x;y)Z
0

N(x; �)d� (1.2)

and

p(t; x; y) = t

1=d�(x;y)Z
0

N(x; �) exp(�t�)d�: (1.3)

Here N(x; �) is the spectral function and J(x; y) is the jump kernel related
to L (the functions d�, N and J will be de�ned later).
Notice that the families of d-balls and d�-balls coincide, whence these two

ultrametrics generate the same topology and the same hierarchical lettice
(i.e. the tree of metric balls), and in particular, the same class of hierarchical
Laplacians.
The aim of this lecture is to present recent results on two-sided estimates

for heat kernels which are associated with certain Markov generators of the
form (1.1) having jump kernels uniformly comparable to the jump kernels
associated with hierarchical Laplacians.1

In the course of study we apply recent results due to Z.-Q. Chen, A.
Grigor�yan, E. Hu, T. Kumagai, J. Wang and others about heat kernels
related to non-local Dirichlet forms on metric spaces.

1A. Bendikov was supported by the Polish National Science Centre, grant
2015/17/B/ST1/00062
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2 Hierarchical v.v. isotropic Laplacian

Hierarchical lattice Let (X; d) be a locally compact and separable ultra-
metric space. Recall that a metric d is called an ultrametric if it satis�es the
ultrametric inequality

d(x; y) � maxfd(x; z); d(z; y)g: (2.1)

One of the basic consequences of the ultrametric property is that

� each open ball is a closed set,

� each point x of a ball B can be regarded as its center,

� any two balls A and B either do not intersect or one is a subset of
another, etc.

In what follows we assume that the ultrametric space (X; d) is proper,
that is, each closed d-ball is a compact set.

Example of Molchanov Consider X = R1; the set of reals equipped
with Lebesgues measure m. Let us �x an integer p � 2 and consider a family
f�r : r 2 Zg of partitions of X :

�r = f(kpr; (k + 1)pr] : k 2 Zg:

We call r the rank of the partition �r (resp., the rank of the interval I 2 �r).
Each interval of rank r is the union of p disjoint intervals of rank (r � 1),
each point x 2 X belongs to a certain interval Ir(x) of rank r, and

Ir�1(x) � Ir(x) � Ir+1(x) and fxg = \r2ZIr(x):

The hierarchical distance d(x; y) is de�ned as follows:

d(x; y) = pn(x;y), where n(x; y) = inffr : y 2 Ir(x)g:

Notice that d(x; y) = 0 if and only if x = y, d(x; y) = d(y; x), and for
arbitrary z 2 X;

d(x; y) � maxfd(x; z); d(z; y)g;
i.e. d(x; y) is an ultrametric.
The set X equipped with the ultrametric d(x; y) is complete, separable

and proper ultrametric space. In the ultrametric space (X; d) the set of all
non-singletone balls coincides with the set of all p-adic intervals.
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Hierarchical Laplacian Let B �X be the set of all non-singletone balls
and B(x) � B the set of all balls centred at x. The set B is atmost countable
whereas X by itself may well be uncountable, e.g. X = R1 as in the example
above. Let C : B ! (0;1) be a function such that for all B 2 B,

�(B) :=
X

T2B: B�T
C(T ) <1 (2.2)

and, for all non-isolated x 2 X,

supf�(B) : B 2 B(x)g =1: (2.3)

Let D be the set of all locally constant functions having compact support.
The set D belongs to Banach spaces C0(X) and Lp = Lp(X;m), 1 � p <1,
and is a dence subset there. For each f 2 D and x 2 X we de�ne (pointwise)
the hierarchical Laplacian LC as follows,

LCf(x) :=
X

B2B(x)

C(B)

0@f(x)� 1

m(B)

Z
B

fdm

1A : (2.4)

The operator (LC ;D) acts in L2; is symmetric and admits a complete system
of eigenfunctions fB;

fB =
1B
m(B)

� 1B0

m(B0)
; (2.5)

where B � B0 run over all nearest neighboring balls having positive measure.
The eigenvalue corresponding to fB is the number �(B0) de�ned at (2.2),

LCfB(x) = �(B0)fB(x):

Since all fB 2 D and the system ffBg � L2 is complete we conclude that
(LC ;D) is essentially self-adjoint operator, i.e. has a unique self-adjoint ex-
tension.
For x; y 2 X we denote xf y the minimal ball containing x and y. The

intrinsic ultrametric d�(x; y) is de�ned as follows,

d�(x; y) :=

�
0 when x = y

1=�(xf y) when x 6= y
: (2.6)

Notice that the ultrametrics d and d� generate the same set of balls and that

�(B) =
1

diam�(B)
, for all balls B:
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In general setting some eigenvalues may well have �nite multiplicity and
some not. Indeed, attached to each ball B of d�-diameter 1=� there are the
eigenvalue � and the corresponding eigenspace HB. The eigenspace HB is
spanned by �nitely many functions fT where T � B runs over the �nite set
of all nearest neighboring balls of B. Let n(B) be the cardinality of this set,
then

dimHB = n(B)� 1:
For two di¤erent balls B and C the eigenspaces HB and HC are orthogonal.
As the set of all eigenfunctions is complete we conclude that

L2(X;m) =
M
B2B

HB:

The spectral function � ! N(x; �) is de�ned as the left-continuous step-
function having jumps at the points �(B), where B runs over the set of all
balls centred at x, and such that

N(x; �(B)) = 1=m(B):

The volume function V (x; r) is de�ned as the volume of a ball centred at x
and having d�-radius r. The following equation holds

V (x; r) = 1=N(x; 1=r): (2.7)

The heat kernel p(t; x; y) is a continuous o¤ the diagonal function which can
be represented in the form

p(t; x; y) = t

1=d�(x;y)Z
0

N(x; �) exp(�t�)d�: (2.8)

It follows that if the function � ! N(x; �) is doubling (and only in this case!),

p(t; x; y) � t

t+ d�(x; y)
N

�
x;

1

t+ d�(x; y)

�
; (2.9)

uniformly in y 2 X and t > 0.
In turn, equations (2.7) and (2.9) imply the following result

p(t; x; y) � min
�

1

V (x; t)
;

t

V (x; d�(x; y))d�(x; y)

�
(2.10)

uniformly in y 2 X and t > 0:
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Example 2.1 Let � : R+ ! R+ be an increasing homeomorphism. For any
two nearest neighbouring balls B � B0 we set

C(B) = �

�
1

m(B)

�
� �

�
1

m(B0)

�
:

Then the following properties hold:

(i) �(B) = � (1=m(B)),

(ii) d�(x; y) = 1=� (1=m(xf y)),

(iii) V (x; r) � 1=��1(1=r). Moreover, V (x; r) � 1=��1(1=r) whenever the
function r ! �(r) is reverse doubling and m(B0) � m(B) for all neigh-
boring balls B � B0 centred at x. In this case r ! V (x; r) is doubling
whence by (2.10), uniformly in y 2 X and t > 0,

p(t; x; y) � t �min
�
1

t
��1

�
1

t

�
;

1

m(xf y)�
�

1

m(xf y)

��
:

Isotropic nature of the hierarchical Laplacian Given a hierarchical
Laplacian LC as de�ned at (2.4) let us introduce two functions:

J(B) =
X

T2B:B�T

C(T )

m(T )
and J(x; y) = J(xf y): (2.11)

It is remarkable but easy to prove that in the introduced notation

LCf(x) =

Z
X

(f(x)� f(y)) J(x; y)dm(y); (2.12)

i.e. (LC ;D) coincides with certain integral operator having isotropic kernel,
we call this operator isotropic Laplacian. Spectral theory of such operators
was studied in the paper

� S. V. Kozyrev, Wavlets and spectral analysis of ultrametric pseudo-
di¤erential operators. Mat. Sb. (2007), 198:1 97-116.

Recall that C(T ) = �(T ) � �(T 0), whence applying the Abel transform
in equation (2.11) we get

J(B) =
�(B)

m(B)
�

X
T2B:B�T

�(T 0)

�
1

m(T )
� 1

m(T 0)

�
� �(B)

m(B)
;
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or
J(x; y) � 1

V (x; d�(x; y))d�(x; y)
uniformly in x; y: (2.13)

Equation (2.10) implies that if � ! N(x; �) is doubling then also for some
constant � > 0,

J(x; y) � �

V (x; d�(x; y))d�(x; y)
uniformly in y: (2.14)

The other way round, consider a function J(B) satisfying the following three
conditions:

(J1) S � T =) J(S) > J(T ) and J(T )! 0 as T ! $:

(J2) �(T ) :=
X

S2B: T�S
m(S)(J(S)� J(S 0)) < +1 for all T 2 B:

(J3) supf�(T ) : T 2 B(x)g = +1 whenever x is not isolated.

Let us set J(x; y) = J(xf y) and de�ne the isotropic Laplacian

LJf(x) =

Z
X

(f(x)� f(y)) J(x; y)dm(y): (2.15)

The operator LJ coincides with certain hierarchical Laplacian LC . Indeed,
let us de�ne a function C : B ! (0;1) as

C(B) = m(B)(J(B)� J(B0))

and consider the hierarchical Laplacian LC as de�ned at (2.4), then

LJf(x) = LCf(x); (2.16)

for all f 2 D and x 2 X:

Spectral multipliers Consider X = Ql
p; the Cartesian product of l copies

of the ring of p-adic numbers Qp equipped with its standard ultrametric
d(x; y) = jx� yjp. The couple (Ql

p; d) becomes a proper ultrametric space if
we set

jzjp = maxfjzijp : i = 1; :::; lg and d(x; y)= jx� yjp .

Letm be the normed Haar measure on the Abelian groupQl
p; L

2 = L2(Ql
p;m)

and F : f ! bf the Fourier transform of function f 2 L2. It is known that
F : D ! D is a bijection.
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Let � : R1+ ! R1+ be an increasing homeomorphism. The self-adjoint
operator �(D) we de�ne as L2�spectral multiplier, that is,

\�(D)f(�) = �(j�jp) bf(�); � 2 Ql
p:

The operator �(D) is a hierarchical Laplacian, whence it can be represented
in the form

�(D)f(x) =

Z
Qp

(f(x)� f(y))J�(x; y)dm(y); f 2 D:

The eigenvalues ��(B) of the operator �(D) and the intrinsic ultrametric
d�(x; y) are of the form

��(B) = �

�
p

diam(B)

�
and d�(x; y) = 1=�

 
p

jx� yjp

!
. (2.17)

The volume function V�(x; r) satis�es the following equation

V�(s) � (1=��1(1=s))l: (2.18)

Let p�(t; x; y) be the heat kernel associated with the operator �(D): Assume
that �(�) is reverse doubling, then, by equation (2.10),

p�(t; x; y) � t �min

8<:1t
�
��1

�
1

t

��l
;

 
p

jx� yjp

!l

�

 
p

jx� yjp

!9=; (2.19)

and

J�(x; y) �
 

p

jx� yjp

!l

�

 
p

jx� yjp

!
(2.20)

uniformly in t > 0 and x; y.
As an example, �(�) = ��, the operator D� is a hierarchical Laplacian.

Its heat kernel p�(t; x; y) and its jump kernel J�(x; y) satisfy

p�(t; x; y) �
t

(t1=� + jx� yjp)l+�

and
J�(x; y) =

p� � 1
1� p�l��

1

jx� yjl+�p

:
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3 Isotropic-like Markov generators

Let J : X � X ! R+ be a symmetric measurable function. Let us de�ne
quadratic form (EJ ;D) as follows

EJ(f; f) =
1

2

Z
X�X

(f(x)� f(y))2 J(x; y)dm(x)dm(y): (3.21)

We study the Markov generator (LJ ;D) de�ned by the kernel J(x; dy) =
J(x; y)dm(y): The operator (LJ ;D) we de�ne either weakly, i.e. via repre-
sentation

EJ(f; f) = (LJf; f); (3.22)

or pointwise

LJf(x) =

Z
X

(f(x)� f(y)) J(x; dy): (3.23)

In order to justify (3.21), (3.22) and (3.23) we assume that

(J.4) There exists an isotropic function J (x; y) = j(x f y) with j(B) sat-
isfying (J:1); (J:2) and (J:3); and such that

J(x; y) � J (x; y) uniformly in x; y 2 X:

Theorem 3.1 Under condition (J:4) the quadratic form (EJ ;D) de�ned by
equation (3.21) is closable and its closure is a regular Dirichlet form having
D as a core. In particular, there exists a non-negative de�nite self-adjoint
operator LJ such that D 2 DomLJ and for f in D equations (3.22) and (3.23)
hold.

Remark 3.2 The conditions (J:1); (J:2) and (J:3) imply that the isotropic
Markov semigroup (e�tL

J
)t�0 acts in C0 and admits a heat kernel pJ (t; x; y).

Whether (J:4) by itself implies that the L2-Markov semigroup (e�tL
J
)t�0 ad-

mits a heat kernel is an open problem at the present writing.

Next theorem gives a partial answer to the question above. It is an ultra-
metric version of the celebrated Aronson �67 theorem for uniformly elliptic
operators in Rd.

Theorem 3.3 Assume that (J:4) holds. Assume that uniformly in x 2 X the
volume function r ! V (x; r) de�ned by the hierarchical Laplacian LJ is both
doubling and reverse doubling. Then the L2-Markov semigroup (e�tL

J
)t�0
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acts in C0(X) and admits a Hölder continuous heat kernel pJ(t; x; y). More-
over, uniformly in x; y 2 X and t > 0;

pJ(t; x; y) � min
�

1

V (x; t)
;

t

V (x; d�(x; y))d�(x; y)

�
; (3.24)

where d� is the intrinsic ultrametric de�ned by the operator LJ :

Proof of Theorem 3.3 is based on recent papers

� Z.-Q. Chen, T. Kumagai and J. Wang, Stability of heat-kernel estimates
for symmetric jump processes on metric spaces, arXiv 14 Apr 2016.

� A. Bendikov, A. Grigor�yan and E. Hu, Heat kernels and non-local
Dirichlet forms on ultrametric spaces. Preprint 2017, 55 pp.

4 The p-adic setting

Recall that any translation invariant hierarchical Laplacian on (Qp; d;m) can
be represented in the form �(D), where D = D1 and �(�) is an increasing
homeomorphism. The self-adjoint operator �(D) can be written in terms of
the Fourier transform as

\�(D)f(�) = �(j�jp) bf(�); � 2 Qp; f 2 D:

As �(D) is a hierarchical Laplacian,

�(D)f(x) =

Z
Qp

(f(x)� f(y))J�(x; y)dm(y); f 2 D;

Theorem 4.1 Let p�(t; x; y) be the heat kernel associated with the operator
�(D). Assume that both � and ��1 are doubling, then

p�(t; x; y) � t �min
(
1

t
��1

�
1

t

�
;

1

jx� yjp
�

 
1

jx� yjp

!)
; (4.25)

and

J�(x; y) �
1

jx� yjp
�

 
1

jx� yjp

!
(4.26)

uniformly in t > 0 and x; y 2 Qp.
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Theorem 4.2 Let � be as above. Let J(x; y) be a symmetric measurable
function such that

J(x; y) � 1

jx� yjp
�

 
1

jx� yjp

!
uniformly in x; y 2 X:

Then the operator (LJ ;D) extends to minus C0-generator of symmetric Markov
semigroup. This semigroup admits a Hölder continuous heat kernel pJ(t; x; y)
and the following estimates hold

pJ(t; x; y) � t �min
(
1

t
��1

�
1

t

�
;

1

jx� yjp
�

 
1

jx� yjp

!)
(4.27)

uniformly in t > 0 and x; y 2 Qp.

Symmetric in�nitely divisible distributions A probability measure �
is said to be in�nitely divisible if there exists a weakly continuous convolution
semigroup of probability measures (�t)t�0 such that � = �1.
In terms of the Fourier transform (�t)t�0 is characterised as followsb�t(�) = e�t (�); � 2 Qp;

where  : Qp ! C is a negative de�nite function such that  (0) = 0:
Assume that the measure � is symmetric, then  (�) is real non-negative

and, by the the Lévy-Khinµcin formula,

 (�) =

Z
Qpnf0g

(1� cos 2��y)dJ(y):

Here J is a symmetric Radon measure on the set Qpnf0g (the Lévy measure).
Clearly, the Markov semigroup Ptf = f ��t is symmetric, acts in C0; and

its minus generator L can be written in the form

Lf(x) =

Z
(f(x)� f(x+ y))dJ(y):

Let us assume that the measure J is absolutely continuous w.r.t. the Haar
measure and that, for certain � as in Theorem 4.1, its density J(y) satis�es

J(y) � 1

jyjp
�

 
1

jyjp

!
uniformly in y:

Then, by Theorem 4.2, each measure �t has a Lipschitz continuous density
�t(y) w.r.t. the Haar measure, and

�t(y) � t �min
(
1

t
��1

�
1

t

�
;
1

jyjp
�

 
1

jyjp

!)
uniformly in t; y:
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